Skip to contents

The accessors mixture and mixturewt return information about the estimated Dirichlet components of the fitted model. Return values are described in the Values section, below.

Usage

mixture(object, ..., assign=FALSE)
mixturewt(object, ...)
goodnessOfFit(object, ...)
laplace(object, ...)
# S4 method for class 'DMN'
AIC(object, ..., k = 2)
# S4 method for class 'DMN'
BIC(object, ...)

# S4 method for class 'DMN'
fitted(object, ..., scale=FALSE)
# S4 method for class 'DMN'
predict(object, newdata, ..., logevidence=FALSE)
# S4 method for class 'DMNGroup'
fitted(object, ...)
# S4 method for class 'DMNGroup'
predict(object, newdata, ..., assign=FALSE)
# S4 method for class 'DMNGroup'
summary(object, ...)

Arguments

object

An instance of class dmn.

newdata

A matrix of new sample x taxon data to be fitted to the model of object.

...

Additional arguments, available to methods, when applicable.

assign

logical(1) indicating whether the maximum per-sample mixture component should be returned (assign=FALSE), or the full mixture matrix (assign=TRUE).

scale

logical(1) indicating whether fitted values should be returned unscaled (default, scaled=FALSE) or scaled by the variability of mixturewt parameter theta.

logevidence

logical(1) indicating whether posterior probability (default, logevidence=FALSE) or log evidence logical=TRUE should be returned.

k

ignored.

Value

mixture with assign=FALSE returns a matrix of sample x Dirichlet component estimates. With assign=TRUE mixture returns a named vector indexing the maximal Dirichlet component of each sample.

mixturewt returns a matrix with rows corresponding to mixture components, and columns pi (component weight) and theta (component variability). Small values of theta correspond to highly variable components.

goodnessOfFit returns a named numeric vector of measures of goodness of fit.

laplace, AIC, and BIC return the corresponding measures of goodness of fit.

Author

Martin Morgan mailto:mtmorgan.xyz@gmail.com

Examples

data(fit)
best <- fit[[4]]
mixturewt(best)
#>          pi    theta
#> 1 0.3108456 52.03706
#> 2 0.1665874 18.72599
#> 3 0.3027727 53.29525
#> 4 0.2197943 30.19582
head(mixture(best), 3)
#>                 [,1]         [,2]         [,3]         [,4]
#> TS1.2   9.999914e-01 2.117284e-11 8.563935e-06 3.306464e-08
#> TS10.2  3.776510e-08 3.268129e-04 9.996731e-01 2.847131e-10
#> TS100.2 7.214444e-09 8.825346e-01 7.953749e-13 1.174654e-01
head(mixture(best, assign=TRUE), 3)
#>   TS1.2  TS10.2 TS100.2 
#>       1       3       2 
goodnessOfFit(best)
#>        NLE     LogDet    Laplace        BIC        AIC 
#> 38953.6920   616.0335 38781.1039 40425.3149 39476.6920 

fl <- system.file(package="DirichletMultinomial", "extdata",
                  "Twins.csv")
count <- t(as.matrix(read.csv(fl, row.names=1)))
data(bestgrp)
bestgrp
#> class: DMNGroup 
#> summary:
#>       k samples taxa       NLE   LogDet   Laplace       BIC       AIC
#> Lean  1      61  130  9065.657 162.3513  9027.371  9332.864  9195.657
#> Obese 3     193  130 26769.931 407.4130 26613.414 27801.418 27161.931
head(predict(bestgrp, count))
#>                 Lean      Obese
#> TS1.2   9.648780e-01 0.03512197
#> TS10.2  1.000058e-03 0.99899994
#> TS100.2 3.522984e-08 0.99999996
#> TS100   3.290371e-05 0.99996710
#> TS101.2 7.349397e-08 0.99999993
#> TS103.2 1.679035e-02 0.98320965