Access model components.
fitted.RdThe accessors mixture and mixturewt return information
about the estimated Dirichlet components of the fitted
model. Return values are described in the Values section, below.
Usage
mixture(object, ..., assign=FALSE)
mixturewt(object, ...)
goodnessOfFit(object, ...)
laplace(object, ...)
# S4 method for class 'DMN'
AIC(object, ..., k = 2)
# S4 method for class 'DMN'
BIC(object, ...)
# S4 method for class 'DMN'
fitted(object, ..., scale=FALSE)
# S4 method for class 'DMN'
predict(object, newdata, ..., logevidence=FALSE)
# S4 method for class 'DMNGroup'
fitted(object, ...)
# S4 method for class 'DMNGroup'
predict(object, newdata, ..., assign=FALSE)
# S4 method for class 'DMNGroup'
summary(object, ...)Arguments
- object
An instance of class
dmn.- newdata
A
matrixof new sample x taxon data to be fitted to the model ofobject.- ...
Additional arguments, available to methods, when applicable.
- assign
logical(1)indicating whether the maximum per-sample mixture component should be returned (assign=FALSE), or the full mixture matrix (assign=TRUE).- scale
logical(1)indicating whether fitted values should be returned unscaled (default,scaled=FALSE) or scaled by the variability ofmixturewtparametertheta.- logevidence
logical(1)indicating whether posterior probability (default,logevidence=FALSE) or log evidencelogical=TRUEshould be returned.- k
ignored.
Value
mixture with assign=FALSE returns a matrix of sample x
Dirichlet component estimates. With assign=TRUE mixture
returns a named vector indexing the maximal Dirichlet component of
each sample.
mixturewt returns a matrix with rows corresponding to mixture
components, and columns pi (component weight) and theta
(component variability). Small values of theta correspond to
highly variable components.
goodnessOfFit returns a named numeric vector of measures of
goodness of fit.
laplace, AIC, and BIC return the corresponding
measures of goodness of fit.
Author
Martin Morgan mailto:mtmorgan.xyz@gmail.com
Examples
data(fit)
best <- fit[[4]]
mixturewt(best)
#> pi theta
#> 1 0.3108456 52.03706
#> 2 0.1665874 18.72599
#> 3 0.3027727 53.29525
#> 4 0.2197943 30.19582
head(mixture(best), 3)
#> [,1] [,2] [,3] [,4]
#> TS1.2 9.999914e-01 2.117284e-11 8.563935e-06 3.306464e-08
#> TS10.2 3.776510e-08 3.268129e-04 9.996731e-01 2.847131e-10
#> TS100.2 7.214444e-09 8.825346e-01 7.953749e-13 1.174654e-01
head(mixture(best, assign=TRUE), 3)
#> TS1.2 TS10.2 TS100.2
#> 1 3 2
goodnessOfFit(best)
#> NLE LogDet Laplace BIC AIC
#> 38953.6920 616.0335 38781.1039 40425.3149 39476.6920
fl <- system.file(package="DirichletMultinomial", "extdata",
"Twins.csv")
count <- t(as.matrix(read.csv(fl, row.names=1)))
data(bestgrp)
bestgrp
#> class: DMNGroup
#> summary:
#> k samples taxa NLE LogDet Laplace BIC AIC
#> Lean 1 61 130 9065.657 162.3513 9027.371 9332.864 9195.657
#> Obese 3 193 130 26769.931 407.4130 26613.414 27801.418 27161.931
head(predict(bestgrp, count))
#> Lean Obese
#> TS1.2 9.648780e-01 0.03512197
#> TS10.2 1.000058e-03 0.99899994
#> TS100.2 3.522984e-08 0.99999996
#> TS100 3.290371e-05 0.99996710
#> TS101.2 7.349397e-08 0.99999993
#> TS103.2 1.679035e-02 0.98320965