Summarize receiver-operator characteristics
roc.RdReturns a data.frame summarizing the cummulative true- and
  false-positive probabilities from expected and observed
  classifications.
Arguments
- exp
 logical()vector of expected classifications to a particular group.- obs
 Predicted probability of assignment to the group identified by
TRUEvalues inexp. The length ofexpandobsmust be identical.- ...
 Additional arguments, available to methods.
Value
A data.frame with columns
- TruePositive
 Cummulative probability of correct assignment.
- FalsePositive
 Cummulative probability of incorrect assignment.
Author
Martin Morgan mailto:mtmorgan.xyz@gmail.com
Examples
library(lattice)
## count matrix
fl <- system.file(package="DirichletMultinomial", "extdata",
                  "Twins.csv")
count <- t(as.matrix(read.csv(fl, row.names=1)))
## phenotype
fl <- system.file(package="DirichletMultinomial", "extdata",
                  "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
names(pheno) <- rownames(count)
## count data used for cross-validation, and cross-validation
count <- csubset(c("Lean", "Obese"), count, pheno)
data(bestgrp)
## true, false positives from single-group classifier
bst <- roc(pheno[rownames(count)] == "Obese",
           predict(bestgrp, count)[,"Obese"])
head(bst)
#>   TruePostive FalsePositive
#> 1 0.005181347             0
#> 2 0.010362694             0
#> 3 0.015544041             0
#> 4 0.020725389             0
#> 5 0.025906736             0
#> 6 0.031088083             0
## lattice plot
xyplot(TruePostive ~ FalsePositive, bst, type="l",
       xlab="False Positive", ylab="True Positive")