Skip to contents

Query projects, publications and citations

Usage

reporter_projects(..., include_fields = NULL, limit = NULL, verbose = FALSE)

reporter_publications(..., limit = NULL, verbose = FALSE)

icite(tbl, include_fields = NULL, verbose = FALSE)

Arguments

...

named arguments descrbing fields in the query. Values are from the 'Schema' linked to the API description.

include_fields

character() of fields to include. The default (null) returns all available fields.

limit

integer(1) return a maximum of limit records matching search criteria.

verbose

logical(1) report JSON used in search criteria, and a summary of responses prior to processing to their final tibble representation.

tbl

For icite(), tbl must contain a column pmid with PubMed ids, for instance as in the tibble derived from reporter_publications().

Value

reporter_projects() returns a tibble with selected columns. Available columns are described in the schema available on the API documentation page.

reporter_publications() returns a tibble with columns coreproject, pmid, and applid.

icite() returns a tibble with columns defined by include_fields.

Details

The NIH reporter API used for reporter_projects() and reporter_publications() is documented at https://api.reporter.nih.gov/.

The icite() API is described at https://icite.od.nih.gov/api.

Examples

foas <- c(        # one or more criteria, e.g., foa number(s)
    "PAR-15-334", # ITCR (R21)”
    "PAR-15-332", # ITCR Early-Stage Development (U01)
    "PAR-15-331", # ITCR Advanced Development (U24)
    "PAR-15-333"  # ITCR Sustained Support (U24)
)

## use `limit = 1` to see possible values for fields to be included
reporter_projects(foa = foas, limit = 1L) |>
    glimpse()
#> Rows: 1
#> Columns: 44
#> $ appl_id                  <int> 9676260
#> $ subproject_id            <lgl> NA
#> $ fiscal_year              <int> 2019
#> $ project_num              <chr> "5U24CA220242-02"
#> $ project_serial_num       <chr> "CA220242"
#> $ organization             <df[,17]> <data.frame[1 x 17]>
#> $ award_type               <chr> "5"
#> $ activity_code            <chr> "U24"
#> $ award_amount             <int> 550158
#> $ is_active                <lgl> FALSE
#> $ project_num_split        <df[,7]> <data.frame[1 x 7]>
#> $ principal_investigators  <list> [<data.frame[1 x 7]>]
#> $ contact_pi_name          <chr> "ABYZOV, ALEXEJ"
#> $ program_officers         <list> [<data.frame[1 x 4]>]
#> $ agency_ic_admin          <df[,3]> <data.frame[1 x 3]>
#> $ agency_ic_fundings       <list> [<data.frame[1 x 5]>]
#> $ cong_dist                <chr> "MN-01"
#> $ spending_categories      <list> <108, 132, 1393, 276, 320, 3070>
#> $ project_start_date       <date> 2018-05-01
#> $ project_end_date         <date> 2023-04-30
#> $ organization_type        <df[,3]> <data.frame[1 x 3]>
#> $ opportunity_number       <chr> "PAR-15-331"
#> $ full_study_section       <df[,6]> <data.frame[1 x 6]>
#> $ award_notice_date        <date> 2019-05-01
#> $ is_new                   <lgl> FALSE
#> $ mechanism_code_dc        <chr> "OR"
#> $ core_project_num         <chr> "U24CA220242"
#> $ terms                    <chr> "<Aftercare><post treatment><After-Treatment>…
#> $ pref_terms               <chr> "Address;Aftercare;Area;Attention;Basic Scien…
#> $ abstract_text            <chr> "Project Summary/Abstract\n Progress in techn…
#> $ project_title            <chr> "Detection of somatic, subclonal and mosaic C…
#> $ phr_text                 <chr> "Narrative\nThe analytical tools that will be…
#> $ spending_categories_desc <chr> "Biotechnology; Cancer; Cancer Genomics; …
#> $ agency_code              <chr> "NIH"
#> $ covid_response           <lgl> NA
#> $ arra_funded              <chr> "N"
#> $ budget_start             <chr> "2019-05-01T12:05:00Z"
#> $ budget_end               <chr> "2020-04-30T12:04:00Z"
#> $ cfda_code                <chr> "399"
#> $ funding_mechanism        <chr> "Other Research-Related"
#> $ direct_cost_amt          <int> 348999
#> $ indirect_cost_amt        <int> 201159
#> $ project_detail_url       <chr> "https://reporter.nih.gov/project-details/967…
#> $ date_added               <chr> "2019-05-04T07:05:16Z"

## select fields of interest
include_fields <- c(
    "opportunity_number",
    "core_project_num",
    "fiscal_year",
    "award_amount",
    "contact_pi_name",
    "project_title",
    "project_start_date",
    "project_end_date"
)
projects <- reporter_projects(foa = foas, include_fields = include_fields)
projects
#> # A tibble: 189 × 8
#>    opportunity_number core_project_num fiscal_year award_amount contact_pi_name 
#>    <chr>              <chr>                  <int>        <int> <chr>           
#>  1 PAR-15-331         U24CA220242             2019       550158 ABYZOV, ALEXEJ  
#>  2 PAR-15-331         U24CA220242             2022       561369 ABYZOV, ALEXEJ  
#>  3 PAR-15-331         U24CA220242             2021       572828 ABYZOV, ALEXEJ  
#>  4 PAR-15-331         U24CA220242             2018       559916 ABYZOV, ALEXEJ  
#>  5 PAR-15-331         U24CA220242             2020       383715 ABYZOV, ALEXEJ  
#>  6 PAR-15-334         R21CA220352             2019       156788 ARNOLD, COREY W…
#>  7 PAR-15-334         R21CA220352             2018       195568 ARNOLD, COREY W…
#>  8 PAR-15-332         U01CA242871             2019       378519 BAKAS, SPYRIDON 
#>  9 PAR-15-332         U01CA242871             2020       360393 BAKAS, SPYRIDON 
#> 10 PAR-15-332         U01CA242871             2021       357972 BAKAS, SPYRIDON 
#> # ℹ 179 more rows
#> # ℹ 3 more variables: project_title <chr>, project_start_date <date>,
#> #   project_end_date <date>

core_project_nums <- pull(projects, "core_project_num")
publications <- reporter_publications(core_project_nums = core_project_nums)
publications
#> # A tibble: 982 × 3
#>    coreproject     pmid   applid
#>    <chr>          <int>    <int>
#>  1 U24CA237719 31907209 10620674
#>  2 U24CA237719 31779674 10620674
#>  3 U24CA237719 35366592 10620674
#>  4 U24CA237719 35072136 10620674
#>  5 U24CA237719 36949070 10620674
#>  6 U24CA237719 34036230 10620674
#>  7 U24CA237719 36541006 10620674
#>  8 U24CA237719 31796060 10620674
#>  9 U24CA237719 32665297 10620674
#> 10 U24CA237719 32644817 10620674
#> # ℹ 972 more rows

## which fields are available in icite?
icite(slice(publications, 1L)) |>
    glimpse()
#> Rows: 1
#> Columns: 25
#> $ pmid                        <dbl> 31907209
#> $ year                        <dbl> 2020
#> $ title                       <chr> "pVACtools: A Computational Toolkit to Ide…
#> $ authors                     <chr> "Jasreet Hundal, Susanna Kiwala, Joshua Mc…
#> $ journal                     <chr> "Cancer Immunol Res"
#> $ is_research_article         <chr> "Yes"
#> $ relative_citation_ratio     <dbl> 5.18
#> $ nih_percentile              <dbl> 93.6
#> $ human                       <dbl> 1
#> $ animal                      <dbl> 0
#> $ molecular_cellular          <dbl> 0
#> $ apt                         <dbl> 0.95
#> $ is_clinical                 <chr> "No"
#> $ citation_count              <dbl> 95
#> $ citations_per_year          <dbl> 31.66667
#> $ expected_citations_per_year <dbl> 6.117195
#> $ field_citation_rate         <dbl> 11.1856
#> $ provisional                 <chr> "No"
#> $ x_coord                     <dbl> 0
#> $ y_coord                     <dbl> 1
#> $ cited_by_clin               <chr> "37563240 37739939"
#> $ cited_by                    <chr> "35646870 34927080 33262196 34529669 35611…
#> $ references                  <chr> "23396013 29170503 31243155 19906713 28694…
#> $ doi                         <chr> "10.1158/2326-6066.CIR-19-0401"
#> $ last_modified               <chr> "11/25/2023, 16:43:52"

include_fields <- c(
    "pmid", "year", "citation_count", "relative_citation_ratio",
    "doi"
)
icite(publications, include_fields)
#> # A tibble: 925 × 5
#>        pmid  year citation_count relative_citation_ratio doi                    
#>       <dbl> <dbl>          <dbl>                   <dbl> <chr>                  
#>  1 19898898  2010             32                    0.78 10.1245/s10434-009-079…
#>  2 24925914  2014           2728                   80.7  10.1126/science.1254257
#>  3 24931973  2014             42                    1.25 10.1093/bioinformatics…
#>  4 25086664  2014             93                    2.46 10.1038/ng.3051        
#>  5 25714012  2015             10                    0.35 10.18632/oncotarget.29…
#>  6 26083491  2015             26                    0.8  10.1371/journal.pone.0…
#>  7 26463000  2016             34                    1.12 10.1093/bib/bbv080     
#>  8 26594663  2015            151                    4.68 10.1016/j.cels.2015.10…
#>  9 26638175  2015            155                    4.33 10.1016/j.molcel.2015.…
#> 10 26644347  2015             28                    0.81 10.1038/ncomms9726     
#> # ℹ 915 more rows